Teaching the Standard Algorithms

Peter Pan Arithmetic Quiz

[Feature photo above by Samuel Mann, Analytical Engine photo below by Roͬͬ͠͠͡͠͠͠͠͠͠͠͠sͬͬ͠͠͠͠͠͠͠͠͠aͬͬ͠͠͠͠͠͠͠ Menkman, both (CC BY 2.0) via Flickr.]

Babbage's Analytical Engine

An algorithm is a set of steps to follow that produce a certain result. Follow the rules carefully, and you will automatically get the correct answer. No thinking required — even a machine can do it.

This photo shows one section of the first true computer, Charles Babbage’s Analytical Engine. Using a clever arrangement of gears, levers, and switches, the machine could crank out the answer to almost any arithmetic problem. Rather, it would have been able to do so, if Babbage had ever finished building the monster.

One of the biggest arguments surrounding the Common Core State Standards in math is when and how to teach the standard algorithms. But this argument is not new. It goes back at least to the late 19th century.

Here is a passage from a book that helped shape my teaching style, way back when I began homeschooling in the 1980s…

Ruth Beechick on Teaching Abstract Notation

Understanding this item is the key to choosing your strategy for the early years of arithmetic teaching. The question is: Should you teach abstract notation as early as the child can learn it, or should you use the time, instead, to teach in greater depth in the mental image mode?


Abstract notation includes writing out a column of numbers to add, and writing one number under another before subtracting it. The digits and signs used are symbols. The position of the numbers is an arbitrary decision of society. They are conventions that adult, abstract thinkers use as a kind of shorthand to speed up our thinking.

When we teach these to children, we must realize that we simply are introducing them to our abstract tools. We are not suddenly turning children into abstract thinkers. And the danger of starting too early and pushing this kind of work is that we will spend an inordinate amount of time with it. We will be teaching the importance of making straight columns, writing numbers in certain places, and other trivial matters. By calling them trivial, we don’t mean that they are unnecessary. But they are small matters compared to real arithmetic thinking.

If you stay with meaningful mental arithmetic longer, you will find that your child, if she is average, can do problems much more advanced than the level listed for her grade. You will find that she likes arithmetic more. And when she does get to abstractions, she will understand them better. She will not need two or three years of work in primary grades to learn how to write out something like a subtraction problem with two-digit numbers. She can learn that in a few moments of time, if you just wait.

— Ruth Beechick
An Easy Start in Arithmetic (Grades K-3)
(emphasis mine)

Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.

2015 Mathematics Game

happy new year 2015

[Feature photo above by Scott Lewis and title background (right) by Carol VanHook, both (CC BY 2.0) via Flickr.]


Did you know that playing games is one of the Top 10 Ways To Improve Your Brain Fitness? So slip into your workout clothes and pump up those mental muscles with the Annual Mathematics Year Game Extravaganza!

For many years mathematicians, scientists, engineers and others interested in math have played “year games” via e-mail. We don’t always know whether it’s possible to write all the numbers from 1 to 100 using only the digits in the current year, but it’s fun to see how many you can find.

Math Forum Year Game Site

Rules of the Game

Use the digits in the year 2015 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

  • You must use all four digits. You may not use any other numbers.
  • Solutions that keep the year digits in 2-0-1-5 order are preferred, but not required.
  • You may use +, -, x, ÷, sqrt (square root), ^ (raise to a power), ! (factorial), and parentheses, brackets, or other grouping symbols.
  • You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.
  • You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

  • You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.
  • You MAY NOT use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. Math Forum allows these, but I’ve decided I prefer my arithmetic straight.

Click here to continue reading.

Fraction Game: My Closest Neighbor

playing cards

[Feature photo above by Jim Larrison, and antique playing cards below by Marcee Duggar, via Flickr (CC BY 2.0).]

I missed out on the adventures at Twitter Math Camp, but I’m having a great time working through the blog posts about it. I prefer it this way — slow reading is more my speed. Chris at A Sea of Math posted a wonderful game based on one of the TMC workshops. Here is my variation.

Math concepts: comparing fractions, equivalent fractions, benchmark numbers, strategic thinking.

Players: two to four.

Equipment: two players need one deck of math cards, three or four players need a double deck.

Continue reading Fraction Game: My Closest Neighbor

World Maths Day 2013: Register Now

It’s time to register for World Maths Day, which will take place on March 6, 2013. Last year, more than five million students from all around the world combined to correctly answer nearly 500 million math problems.

Would you like to help break the record this year? Register now so you can practice in advance!

About World Maths Day

  • Play with students from schools all around the world. Individuals and homeschoolers are welcome, too.
  • The competition is designed for ages 4-18 and all ability levels. Teachers, parents and media can also register and play.
  • It’s simple to register and participate. Start practicing as soon as you register.
  • And best of all, it’s absolutely free.

Continue reading World Maths Day 2013: Register Now

PUFM 1.5 Multiplication, Part 2

Multiplication Matching Cards

Poster by Maria Droujkova of NaturalMath.com. In this Homeschooling Math with Profound Understanding (PUFM) Series, we are studying Elementary Mathematics for Teachers and applying its lessons to home education.

Multiplication is taught and explained using three models. Again, it is important for understanding that students see all three models early and often, and learn to use them when solving word problems.

— Thomas H. Parker & Scott J. Baldridge
Elementary Mathematics for Teachers

I hope you are playing the Tell Me a (Math) Story game often, making up word problems for your children and encouraging them to make up some for you. As you play, don’t fall into a rut: Keep the multiplication models from our lesson in mind and use them all. For even greater variety, use the Multiplication Models at NaturalMath.com (or buy the poster) to create your word problems.

Continue reading PUFM 1.5 Multiplication, Part 2

Build Mathematical Skills by Delaying Arithmetic, Part 4

To my fellow homeschoolers,

While Benezet originally sought to build his students’ reasoning powers by delaying formal arithmetic until seventh grade, pressure from “the deeply rooted prejudices of the educated portion of our citizens” forced a compromise. Students began to learn the traditional methods of arithmetic in sixth grade, but still the teachers focused as much as possible on mental math and the development of thinking strategies.

Notice how waiting until the children were developmentally ready made the work more efficient. Benezet’s students studied arithmetic for only 20-30 minutes per day. In a similar modern-day experiment, Daniel Greenberg of Sudbury School discovered the same thing: Students who are ready to learn can master arithmetic quickly!

Grade VI

[20 to 25 minutes a day]

At this grade formal work in arithmetic begins. Strayer-Upton Arithmetic, book III, is used as a basis.

The processes of addition, subtraction, multiplication, and division are taught.

Care is taken to avoid purely mechanical drill. Children are made to understand the reason for the processes which they use. This is especially true in the case of subtraction.

Problems involving long numbers which would confuse them are avoided. Accuracy is insisted upon from the outset at the expense of speed or the covering of ground, and where possible the processes are mental rather than written.

Before starting on a problem in any one of these four fundamental processes, the children are asked to estimate or guess about what the answer will be and they check their final result by this preliminary figure. The teacher is careful not to let the teaching of arithmetic degenerate into mechanical manipulation without thought.

Fractions and mixed numbers are taught in this grade. Again care is taken not to confuse the thought of the children by giving them problems which are too involved and complicated.

Multiplication tables and tables of denominate numbers, hitherto learned, are reviewed.

— L. P. Benezet
The Teaching of Arithmetic II: The Story of an experiment

Continue reading Build Mathematical Skills by Delaying Arithmetic, Part 4

Build Mathematical Skills by Delaying Arithmetic, Part 3

To my fellow homeschoolers,

How can our children learn mathematics if we delay teaching formal arithmetic rules? Ask your librarian to help you find some of the wonderful living books about math. Math picture books are great for elementary students. Check your library for the Time-Life “I Love Math” books or the “Young Math Book” series. You’ll be amazed at the advanced topics your children can understand!

Benezet’s students explored their world through measurement, estimation, and mental math. Check out my PUFM Series for mental math thinking strategies that build your child’s understanding of number patterns and relationships.

Grade IV

Still there is no formal instruction in arithmetic.

By means of foot rules and yard sticks, the children are taught the meaning of inch, foot, and yard. They are given much practise in estimating the lengths of various objects in inches, feet, or yards. Each member of the class, for example, is asked to set down on paper his estimate of the height of a certain child, or the width of a window, or the length of the room, and then these estimates are checked by actual measurement.

The children are taught to read the thermometer and are given the significance of 32 degrees, 98.6 degrees, and 212 degrees.

They are introduced to the terms “square inch,” “square foot,” and “square yard” as units of surface measure.

With toy money [or real coins, if available] they are given some practise in making change, in denominations of 5’s only.

All of this work is done mentally. Any problem in making change which cannot be solved without putting figures on paper or on the blackboard is too difficult and is deferred until the children are older.

Toward the end of the year the children will have done a great deal of work in estimating areas, distances, etc., and in checking their estimates by subsequent measuring. The terms “half mile,” “quarter mile,” and “mile” are taught and the children are given an idea of how far these different distances are by actual comparisons or distances measured by automobile speedometer.

The table of time, involving seconds, minutes, and days, is taught before the end of the year. Relation of pounds and ounces is also taught.

— L. P. Benezet
The Teaching of Arithmetic II: The Story of an experiment

Continue reading Build Mathematical Skills by Delaying Arithmetic, Part 3