FAQ: Struggling with Arithmetic

My son can’t stand long division or fractions. We had a lesson on geometry, and he enjoyed that — especially the 3-D shapes. If we can just get past the basics, then we’ll have time for the things he finds interesting. But one workbook page takes so long, and I’m sick of the drama. Should we keep pushing through?

Those upper-elementary arithmetic topics are important. Foundational concepts. Your son needs to master them.

Eventually.

But the daily slog through page after page of workbook arithmetic can wear anyone down.

Many children find it easier to focus on math when it’s built into a game.

Take a look at Colleen King’s Math Playground website. Or try one of the ideas on John Golden’s Math Hombre Games blog page.

Or sometimes a story helps, like my Cookie Factory Guide to Long Division.

Math Textbook Tips

Games are great for practicing math your child has already learned. But for introducing new concepts, you’ll probably want to follow your textbook.

Still, even with textbook math, there are ways to make the journey less tedious:

  • Most children do not need to do every problem on a workbook page, or every page in a section. There is a lot of extra review built into any math program.
     
  • You don’t have to finish a section before you work whatever comes after it. Use sticky bookmarks to keep track of your position in two or three chapters at a time. Do a little bit of the mundane arithmetic practice, and then balance that with some of the more interesting topics your son enjoys.
     
  • As much as possible, do math out loud with a whiteboard for scratch work. Somehow, working with colorful markers makes arithmetic more bearable.
     
  • Set a timer for math, and make the time short enough that he feels the end is in sight. I suggest no more than thirty minutes a day for now. And whenever the timer rings, stop immediately — even if you are in the middle of a problem.
     

The Timer Can Be a Life-Saver

Doing math in short sessions helped us avoid the emotional melt-downs my daughter used to have.

Thinking is hard work, and if I asked for too much, she would crash.

Because I sat with her and worked together every problem, I knew what she understood and when we could skip a problem. Or sometimes even jump several pages. Which meant that, even with short lessons, we still got through our book on time.

Arithmetic Is Like Vegetables

But as I said before, textbooks include a whole lot of repetition.

Too much repetition deadens the brain.

So we also took long breaks from our textbook program. Entire school-year-long breaks, just playing with math. Letting “enrichment” activities be our whole curriculum.

As healthy as vegetables are, you would never limit your son to eating just lima beans and corn.

Similarly, be sure to feed him a varied math diet.

For example, you can follow his interest in geometry beyond the standard school topics.

Explore tessellations, Escher art, and impossible shapes such as the Penrose triangle.

Building Lego scenes is a practical application of 3-D geometry. He might even want to try stop motion animation.

Talk about how math works in real life. Ponder the choices on John Stevens’s “Would You Rather?” blog or try some of the challenges at Andrew Stadel’s Estimation 180 website. Many of these require three-dimensional reasoning.

How is the Penrose triangle illusion created? Why can’t we build one in the real world?

A Blogging Challenge

This is my second contribution to the blogging challenge #MTBoSBlaugust.

I’m aiming for at least one post each week. A simple, modest goal. But if I manage it, that will be four times the pace I’ve set in recent months.

Two posts down…

CREDITS: Frustrated Child photo by by Pixabay on Pexels.com. Penrose Lego by Erik Johansson via Flickr (CC BY 2.0). Homework Hands photo by Tamarcus Brown on Unsplash.

Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.

howtosolveproblemsWant to help your kids learn math? Claim your free 24-page problem-solving booklet, and sign up to hear about new books, revisions, and sales or other promotions.

Happy National Coloring Book Day

I don’t know who comes up with these holidays. But according to my Dover Publications newsletter, tomorrow (August 2nd) is National Coloring Book Day.

Sounds like a good excuse to play some math!

Mathy Coloring Resources to Download

geometric-coloring-designs-cover

If you know of any other free math coloring resources, please share a link in the comments below.

A Challenge Ahead

This month, I’ve joined a blog posting challenge called #MTBoSBlaugust.

At first, I thought of trying to post every day, but there’s no way I will keep up with that. So I’ll set my goal for at least one post each week.

A simple, modest goal. But if I manage it, that will be four times the pace I’ve set in recent months.

One post down…

Credits: “School Crayons” photo by Sharon McCutcheon on Unsplash.

howtosolveproblemsWant to help your kids learn math? Claim your free 24-page problem-solving booklet, and sign up to hear about new books, revisions, and sales or other promotions.

FAQ: Forgetting What They Learned

“As we go through each lesson, it seems like my daughter has a good handle on the concepts, but when we get to the test she forgets everything. When I ask her about it, she shrugs and says, ‘I don’t know.’ What do you do when your child completely loses what she has learned?”

Forgetting is the human brain’s natural defense mechanism. It keeps us from being overwhelmed by the abundance of sensory data that bombards us each moment of every day.

Our children’s minds will never work like a computer that can store a program and recall it flawlessly months later.

Sometimes, for my children, a gentle reminder is enough to drag the forgotten concept back out of the dust-bunnies of memory.

Other times, I find that they answer “I don’t know” out of habit, because it’s easier than thinking about the question. And because they’d prefer to be doing something else.

And still other times, I find out they didn’t understand the topic as well as I thought they did when we went through it before.

No matter how we adults try to explain the concepts, some kids want to be answer-getters. They don’t want to do the hard work of thinking a concept through until it makes a connection in their minds. They want to memorize a few steps and crank through the lesson to get it over with.

In all these cases, what helps me the most is conversation.

My children and I always talk about our math. I ask questions like “What do you think? What do you remember? Can you explain the question to me? What are they asking for?”

And, whether the child’s answer is right or wrong, I practice my poker face. Trying not to give anything away, I ask, “How did you figure it out? Can you think of a way to confirm your answer?”

Talking Math with Your Kids

Danielson-Talking Math

Not sure how to talk about math with your children?

If you have preschool and elementary-age kids, read Christopher Danielson’s inspiring book and blog:

For middle school and older students, check out Fawn Nguyen’s wonderful collection of Math Talks. Be sure to read the “Teachers” page for tips and talking points:

“You don’t need special skills to do this. If you can read with your kids, then you can talk math with them. You can support and encourage their developing mathematical minds.”

— Christopher Danielson
Talking Math with Your Kids

Playful Ways to Learn or Review Math

Games are a great way to practice math. Check out these (free!) math games for all ages:

And if you have elementary-age children, here are a few grade-level tips to help them learn (and remember) math concepts:


Credits: Girl in field photo by SOURCE Hydration Systems and Sandals technology via Flickr. (CC BY 2.0) Nigerian classroom photo by Doug Linstedt and young girl studying by pan xiaozhen on Unsplash.

Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.

howtosolveproblemsWant to help your kids learn math? Claim your free 24-page problem-solving booklet, and sign up to hear about new books, revisions, and sales or other promotions.

Math Debate: Adding Fractions

Cover image by Thor/ geishaboy500 via Flickr (CC BY 2.0)

I’ve been working on my next Playful Math Singles book, based on the popular Things to Do with a Hundred Chart post.

My hundred chart list began many years ago as seven ideas for playing with numbers. Over the years, it grew to its current 30+ activities.

Now, in preparing the new book, my list has become a monster. I’ve collected almost 70 ways to play with numbers, shapes, and logic from preschool to middle school. Just yesterday I added activities for fraction and decimal multiplication, and also tips for naming complex fractions. Wow!

Gonna have to edit that cover file…

In the “Advanced Patterns” chapter, I have a section on math debates. The point of a math debate isn’t that one answer is “right” while the other is “wrong.” You can choose either side of the question — the important thing is how well you support your argument.

Here’s activity #69 in the current book draft.

Have a Math Debate: Adding Fractions

When you add fractions, you face a problem that most people never consider. Namely, you have to decide exactly what you are talking about.

For instance, what is one-tenth plus one-tenth?

1/10 of 100

Well, you might say that:

\frac{1}{10}  of one hundred chart
+ \frac{1}{10}  of the same chart
= \frac{2}{10}  of that hundred chart

But, you might also say that:

\frac{1}{10}  of one chart
+ \frac{1}{10}  of another chart
= \frac{2}{20}  of the pair of charts

That is, you started off counting on two independent charts. But when you put them together, you ended up with a double chart. Two hundred squares in all. Which made each row in the final set worth \frac{1}{20}  of the whole pair of charts.

So what happens if you see this question on a math test:

\frac{1}{10}  + \frac{1}{10}  = ?

If you write the answer “\frac{2}{20}”, you know the teacher will mark it wrong.

Is that fair? Why, or why not?


CREDITS: Feature photo (above) by Thor/geishaboy500 via Flickr (CC BY 2.0). “One is one … or is it?” video by Christopher Danielson via TED-Ed. This math debate was suggested by Marilyn Burns’s blog post Can 1/3 + 1/3 = 2/6? It seemed so!

howtosolveproblemsWant to help your kids learn math? Claim your free 24-page problem-solving booklet, and sign up to hear about new books, revisions, and sales or other promotions.

Funville Adventures: Blake’s Story

Today we have a guest post — an exclusive tale by Sasha Fradkin and Allison Bishop, authors of the new math storybook Funville Adventures. Enjoy!

Funville Adventures is a math-inspired fantasy that introduces children to the concept of functions, which are personified as magical beings with powers.

Each power corresponds to a transformation such as doubling in size, rotating, copying, or changing color. Some Funvillians have siblings with opposite powers that can reverse the effects and return an object to its original state, but other powers cannot be reversed.

In this way, kids are introduced to the mathematical concepts of invertible and non-invertible functions, domains, ranges, and even functionals, all without mathematical terminology.

We know about Funville because two siblings, Emmy and Leo, were magically transported there after they went down an abandoned slide.

When they came back, Emmy and Leo shared their adventures with their friends and also brought back the following manuscript written by their new friend Blake.

Continue reading Funville Adventures: Blake’s Story

2018 Mathematics Game — Join the Fun!

Let’s resolve to have fun with math this year. Ben has posted a preview of 2018’s mathematical holidays. Iva offers plenty of cool ways to think about the number 2018. And Patrick proposes a new mathematical conjecture.

But my favorite way to celebrate any new year is by playing the Year Game. It’s a prime opportunity for players of all ages to fulfill the two most popular New Year’s Resolutions: spending more time with family and friends, and getting more exercise.

So grab a partner, slip into your workout clothes, and pump up those mental muscles!

For many years mathematicians, scientists, engineers and others interested in mathematics have played “year games” via e-mail and in newsgroups. We don’t always know whether it is possible to write expressions for all the numbers from 1 to 100 using only the digits in the current year, but it is fun to try to see how many you can find. This year may prove to be a challenge.

Math Forum Year Game Site

Rules of the Game

Use the digits in the year 2018 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

  • You must use all four digits. You may not use any other numbers.
  • Solutions that keep the year digits in 2-0-1-8 order are preferred, but not required.
  • You may use +, -, x, ÷, sqrt (square root), ^ (raise to a power), ! (factorial), and parentheses, brackets, or other grouping symbols.
  • You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.
  • You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

  • You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.
  • You MAY use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. I’m including these because Math Forum allows them, but I personally try to avoid the beasts. I feel much more creative when I can wrangle a solution without invoking them.

Click here to continue reading.