A Beautiful Puzzle

This lovely puzzle (for upper-elementary and beyond) is from Nikolay Bogdanov-Belsky’s 1895 painting “Mental Calculation. In Public School of S. A. Rachinsky.” Pat Ballew posted it on his blog On This Day in Math, in honor of the 365th day of the year.

I love the expressions on the boys’ faces. So many different ways to manifest hard thinking!

Here’s the question:

No calculator allowed. But you can talk it over with a friend, as the boys on the right are doing.

You can even use scratch paper, if you like.

Thinking About Square Numbers

And if you’d like a hint, you can figure out square numbers using this trick. Think of a square number made from rows of pennies.

Can you see how to make the next-bigger square?

Any square number, plus one more row and one more column, plus a penny for the corner, makes the next-bigger square.

So if you know that ten squared is one hundred, then:

… and so onward to your answer. If the Russian schoolboys could figure it out, then you can, too!

Update

Simon Gregg (@Simon_Gregg) added this wonderful related puzzle for the new year:

There Ain’t No Free Candy

Ah, the infinite chocolate bar. If only it could work in real life! But can your children find the mistake? Where does the extra chocolate come from?

Here’s a hint: It’s related to this classic brainteaser. And here’s a video from Christopher Danielson (talkingmathwithkids.com), showing how the chocolate bar dissection really works.

Happy munchings!

CREDITS: Feature photo (top) by Yoori Koo via Unsplash. “Hershey Bar Math” video by Christopher Danielson via YouTube. The infinite chocolate gif went viral long ago, and I have no idea who was the original artist.

Confession: I Am Not Good at Math

I want to tell you a story. Everyone likes a story, right? But at the heart of my story lies a confession that I am afraid will shock many readers.

confessionPeople assume that because I teach math, blog about math, give advice about math on internet forums, and present workshops about teaching math — because I do all this, I must be good at math.

Apply logic to that statement.

The conclusion simply isn’t valid.

Continue reading Confession: I Am Not Good at Math

2017 Mathematics Game

Two of the most popular New Year’s Resolutions are to spend more time with family and friends, and to get more exercise. The 2017 Mathematics Game is a prime opportunity to do both at once.

So grab a partner, slip into your workout clothes, and pump up those mental muscles!

For many years mathematicians, scientists, engineers and others interested in mathematics have played “year games” via e-mail and in newsgroups. We don’t always know whether it is possible to write expressions for all the numbers from 1 to 100 using only the digits in the current year, but it is fun to try to see how many you can find. This year may prove to be a challenge.

Math Forum Year Game Site

Rules of the Game

Use the digits in the year 2017 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

  • You must use all four digits. You may not use any other numbers.
  • Solutions that keep the year digits in 2-0-1-7 order are preferred, but not required.
  • You may use +, -, x, ÷, sqrt (square root), ^ (raise to a power), ! (factorial), and parentheses, brackets, or other grouping symbols.
  • You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.
  • You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

  • You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.
  • You MAY use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. I’m including these because Math Forum allows them, but I personally try to avoid the beasts. I feel much more creative when I can wrangle a solution without invoking them.

Click here to continue reading.

A New Graph-It Puzzle

Since I’ve been posting new Alexandria Jones stories this week (beginning here), I’ve gone back and re-read the old Christmas posts. I noticed that the original Graph-It Game included a religious design, but nothing for those who don’t celebrate Christmas.

So I updated the post with a new, non-religious puzzle. Here it is, if you want to play…

Graph-It Game Design

For this design, you will need graph paper with coordinates from −8 to +8 on both the x- and y-axis. Connect the points in each line. Stop at the periods, and then start a new line at the next point.

(-8,8) – (-8,0) – (0,8) – (-8,8) – (-4,4) – (0,4) – (0,8) – (8,8) – (4,4) – (0,8).

(8,8) – (8,0) – (4,0) – (4,-4) – (8,0) – (8,-8) – (0,-8) – (4,-4) – (0,-4) – (0,-8) – (-8,0) – (-8, -8) – (0,-8).

(-8,-8) – (4,4) – (0,4) – (4,0) – (4,4) – (8,0).

(8,-8) – (-4,4) – (-4,-4) – (0,-4) – (-4,0) – (-8,0).

(0,-2) – (0,-4) – (4,0) – (2,0) – (2,-2) – (-2,-2) – (-2,2) – (2,2) – (2,0) – (1,1) – (1,0) – (2,0) – (0,-2) – (-2,0) – (0,2) – (1,1) – (-1,1) – (-1,-1) – (1,-1) – (1,0) – (-4,0) – (0,4) – (0,-1) – (-1,0) – (0,1) – (1,0) – (0,-1) – (0,-2).

Color in your design and hang it up for the whole family to enjoy!

Now Make Your Own

Of course, the fun of the Graph-It Game is to make up your own graphing puzzle. Can you create a coordinate design for your friends to draw?

Want More?

You can see all the Alexandria Jones Christmas posts at a glance here:

CREDITS: “Love Christmas Lights” photo by Kristen Brasil via Flickr (CC BY 2.0).

The Mysterious Block Puzzle

3-way-block-puzzleFor toddler Renée’s Christmas gift, Alex and Leon crafted a puzzle set of wooden blocks.

First, they made a sturdy box with circle, square, and triangle shapes cut in the lid.

To make the blocks large and baby-safe, Alex and Leon bought a 4-foot 2×2 board. Then they asked Uncle Will to help them create a set of special blocks to fit through the holes.

Each block was round and square and triangular, so it could fit exactly through any of the three holes.

How can that be?

To Be Continued…

Read all the posts from the December 2000/January 2001 issue of my Mathematical Adventures of Alexandria Jones newsletter.

CREDITS: “Christmas Tree Closeup” photo by Zechariah Judy via Flickr (CC BY 2.0).

Puzzle: Exploding Dots

I’m planning ahead for my fall semester homeschool co-op math class. Definitely going to try this with the kids…

Encourage your children to have some fun this week with this Exploding Dots math puzzle from The Global Math Project. What do they notice? Does it make them wonder?

More Explosive Math

You may recognize the connection between Exploding Dots and binary numbers. Or not — the puzzle is accessible to people at almost any age and level of mathematical sophistication.

But what I find amazing is that this puzzle can help us understand all sorts of topics in elementary arithmetic and algebra. So cool!

If you’d like to investigate Exploding Dots in depth, check out James Tanton’s free G’Day Math online course.

March 2016 Math Calendars

Once again, a few of my favorite bloggers have come through with math calendars for our students to puzzle over. Check them out:

algebra calendar

Things to Do with a Math Calendar

At home:
Post the calendar on your refrigerator. Use each math puzzle as a daily review “mini-quiz” for your children (or yourself).

In the classroom:
Post today’s calculation on the board as a warm-up puzzle. Encourage your students to make up “Today is…” puzzles of their own.

As a puzzle:
Cut the calendar squares apart and trim off the dates. Then challenge your students to arrange them in ascending (or descending) order.

Make up problems to fill a new calendar for next month.
And if you do, please share!

Hotel Infinity: Part Five

Hotel Infinity1Tova Brown concludes her exploration of the Hilbert’s Hotel Paradox with a look at the cardinality of the real numbers.

You run a hotel with an infinite number of rooms. You pride yourself on accommodating everyone, even guests arriving in infinitely large groups — but some infinities are more infinite than others, as it turns out.

Tova Brown
Hotel Infinity: Part Five

Check out Tova Brown’s growing collection of videos that explore advanced math concepts through story-telling.

Hotel Infinity: Part Four

Hotel Infinity1Tova Brown dives deeper into Hilbert’s Hotel Paradox, considering the difference between rational numbers and reals.

You run an infinitely large hotel, and are happy to realize that you can accommodate an infinite number of infinite groups of guests.

However, a delicate diplomatic situation arises when a portal to another universe opens, introducing a different kind of guest, in a different kind of group.

Can you make room for them all?

Tova Brown
Hotel Infinity: Part Four

Click here to read Part Five…