FAQ: Trouble Finding the Right Math Program

“I can’t find a home school math program my son likes. We’ve tried Singapore Math, Right Start, Saxon, and Math Mammoth. We subscribed to a month of IXL Math to keep him in practice, but he hates that, too. I know I shouldn’t have changed so many times, but this was our first year of homeschooling, and I was trying to please him. But I’m running out of things to try. Do you think Life of Fred might work?”

Rock-Surfing

You’ve tried all those math programs in one year? Many people recommend that new homeschoolers take a few months off to “detox” from the classroom setting, to relax and enjoy the freedom of making their own choices. But your son might want a few months to detox from his homeschool experience.

I suggest you set aside all those books and focus on games and informal math. Try to avoid schoolish lessons until your son starts to enjoy learning for its own sake. The Internet offers an abundance of creative math ideas.

  • For example, download the Wuzzit Trouble or DragonBox apps to play with, but don’t make it a homework assignment.
  • Or let him choose one of the activities at Gordon Hamilton’s Math Pickle website and explore it for a day or a week or as long as it remains interesting.
  • Browse through the Primary Level 1 or Level 2 puzzles and games at the Nrich Mathematics website for more ideas.

Look for more playful math on my blog’s resource pages:

Explore Big Concepts: Infinity

Math that captures a child’s imagination can make the more tedious work seem bearable. For instance, in the 1920s, mathematician David Hilbert created a story about an imaginary grand hotel with an infinite number of rooms.

Explore Big Concepts: Fractals

Sierpinski-tortillasTake a mental trip to infinity by playing with fractals. Cynthia Lanius’s online Fractals Unit for Elementary and Middle School Students offers a child-friendly starting point.

Fractals are self-similar, which means that subsections of the object look like smaller versions of the whole thing.

Most children enjoy exploring the concept of infinity with hands-on fractal patterns, such as this Sierpinski triangle made of tortilla chips. Talk about what you notice and wonder: How does the triangle grow? How many chips will we need for the next stage?

The Daily Four

If you worry that your son needs to keep practicing traditional arithmetic during his break, try making him a series of Daily Four pages:

  • Fold a sheet of plain paper in half both ways, making four quarter sections.
  • Write one math problem in each part. Choose them from any of your math books.
  • Make sure each problem is different — one addition, one fractions, one multiplication, or whatever — and that none of them are hard enough to cause frustration.
  • Don’t worry about an answer sheet. Show him how to use a calculator to check his work.

You can make up a whole week’s worth of these problem sheets at once, with a balanced mix of problems for each day. Your son won’t feel overwhelmed, but you’ll know he’s reviewing his number skills.

Or download some of the Corbettmaths 5-a-Day practice sheets for him. Some problems may seem too easy while others require concepts he hasn’t studied yet. Easy review won’t hurt anything, but do let him skip the problems that feel too hard.

Explore-Big-Concepts


Credits: “Rock Surfer Boy” by Ken Bosma and “Boy” by Isengardt via Flickr. (CC BY 2.0) Hotel Infinity video by Tova Brown.

Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


FAQ: He Won’t Stop Finger-Counting

“My oldest son has somehow developed the horrid habit of counting on his fingers. We worked on the math facts all summer. He knows the answers in simple form, such as 9 + 4, but if it’s in a bigger problem like 249 + 54, he counts up to add or counts down to subtract, all using fingers. My younger children have no problem with mental math, but he can’t seem to get it. Are there any tips or tricks to stop this?”

New Crutches

Counting on fingers is not a horrid habit, it is a crutch. Please think for a moment about the purpose of crutches. The blasted things are an uncomfortable nuisance, but there are times when you can’t get anywhere without them. And if you need them, it does you no good for a friend to insist you should crawl along on your own.

That is how your son feels right now about his fingers. He is struggling with something his younger siblings find easy, and he can tell that you are frustrated. His confidence is broken, in a cast, and needs time for healing. So he falls back on what he knows he can do, counting up the answer.

Think positive: this means he still believes that math ought to make sense — that to understand what he is doing is more important than to guess at an answer. You want him to value sense-making, because otherwise he will try to memorize his way through middle school and high school math. That is the road to disaster.

“Schools spend a lot of time working with young children to get these facts memorized, but many children aren’t ready for that task yet. They’ll count on their fingers, and may be reprimanded for it.
“What happens when a person becomes embarrassed about counting on their fingers? If they still want to think, they’ll hide it. That’s the better option. The worse option that way too many students choose? They start guessing. When math becomes too incomprehensible, or not living up to someone else’s expectations becomes too painful, many students give up on math, and then they just guess.
“We count on our fingers as part of a thinking process. Perhaps the thing I want to figure can be memorized. But if I haven’t memorized it yet myself, the most efficient way to figure it will likely involve fingers.

—Sue VanHattum
Philosophy

The Problem of Transfer

What you describe is called the problem of transfer, and it is one of the huge, unsolved problems of education.

We can train someone to do a simple, limited task such as answering flash cards. But how do we get that knowledge to sink in, to become part of the mind, so they can use it in all sorts of different situations?

No one has figured that out.

There is no easy solution. It requires patience, and providing a variety of experiences, and patience, and pointing out connections, and asking the student to think of connections, and lots more patience.

Some Things to Try

It might help to do fewer math problems in a day, so you can take time to work more deeply on each one. Talk together about the different ways you might solve it. Make it a challenge: “Can we think of three different ways to do it?”

In math, there is never just one way to get a solution. Thinking about alternatives will help your son develop that transfer of skills.

Or pick up some workbooks that target mental math methods. The Mental Math workbook series by Jack Hope and Barbara and Robert Reys will help him master the techniques your younger kids learned without effort. It may still take him longer to do a calculation than what you are used to with the other children, but these books will give him a boost in recognizing the types of mental tools he can use.

Here are a few of my previous blog posts that include mental math tips:

Or perhaps encourage him to keep using his fingers, but to switch to a more efficient system, such as Chisenbop. According to math education expert Jo Boaler, research shows that finger-counting supports mathematical understanding.

Mental Math: A Battle Worth Fighting

Jumping into mental math is hard for an older child who wasn’t taught that way. I believe it’s a battle worth fighting, because those mental math techniques build understanding of the fundamental properties of numbers.

But the main goal is for him to recognize his options and build flexibility, not to do each calculation as fast as possible.

And be sure he no longer needs those crutches before you try to take them away.

Mental-Math-Goal


Photo credits: “Stryde Walking To School on his New Crutches” by Jim Larrison and “Silhouette of a boy” by TimOve via Flickr. (CC BY 2.0)

Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Dreams for our Children

Don’t you love this quotation?

For our children, we dream that mathematics…

… makes sense
… is more than just arithmetic
… is joyous
… makes them strong
… is meaningful
… is creative
… is full of fascinating questions
… opens up many paths to solutions
… is friendly
… solves big problems and makes the world better
… is a powerful tool they can master
… is beautiful
… lets them learn in their own ways
… is connected to their lives
… asks “why” and not just “how”
… opens the world

Avoid Hard WorkFrom the upcoming new book Avoid Hard Work by James Tanton and the Natural Math team.

Join the crowdfunding campaign and reserve your copy today!



Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


FAQ: Trouble with Worksheets

“Worksheet problems make my daughter’s brain freeze. Even simple things such as “2 + ___ = 2″ confuse her. What can I do?”

Can your daughter do math if you put away the worksheet and ask her a real-life problem: “I have a lunch sack. I put two cookies into the sack, and then I give it to you. When you look into the sack, you see two cookies there. Can you tell me what was in the sack at the beginning, before I put my cookies in?”

Or can she solve problems when the answer isn’t zero? Could she figure out how many you started with if she saw four cookies when she looked in the sack?

The idea of having a number for “nothing” can seem strange to young children.

Worksheet Calculations Are Not Math

Can your daughter think mathematically, without calculations?

The symbols on the worksheet are not math. They are just one way of recording how we think about number relationships, and not a very natural way for children. Mathematics is a way of thinking — paying attention to the relationship between ideas and reasoning out connections between them. Encourage your daughter to notice these relationships and wonder about them.

Try watching Christopher Danielson’s video “One is one … or is it?” together, and then see how many different examples of “one” she can find around the house.

The Power of Story

Many kids at this age have a hard time with abstract number math — then their brains will grow up, and they’ll be able to do it. Development varies from one child to another.

When I do worksheets with young children, I turn each equation into a little story. Like the “cookies in a lunch sack” story above.

Sometimes we use blocks or other manipulatives to count on, but often the mental picture of a story is enough. Having something solid to imagine helps the child reason out the relationships between the numbers and symbols.

FAQworksheets


Quote photo: Carl Vilhelm Holsøe ‘Interior with a mother reading aloud to her daughter’ 19th Century. Image from Plum Leaves via Flickr. (CC BY 2.0)

Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


FAQ: Lifelong Learning for Parents

“I’m so tired of being ignorant about math. I can memorize rules and do calculations, but if I miss a step the numbers make no sense at all, and I can’t spot what went wrong. Another struggle I have is keeping everything organized in my mind. When I learn a new concept or strategy, I easily forget it. My son is only a toddler now, but as he grows up, I don’t want to burden him with my own failures. Where should I start?”

As a first step, convince yourself that math is interesting enough to learn on its own merits, because parental guilt will only carry you so far. Start with Steven Strogatz’s “Elements of Math” series from The New York Times, or pick up his book The Joy of x.

As a next step, reassure yourself that elementary math is hard to understand, so it’s not strange that you get confused or don’t know how to explain a topic. Get Liping Ma’s Knowing and Teaching Elementary Mathematics from the library or order a used copy of the first edition. Ma examines what it means to understand math and to clearly explain it to others.

Don’t rush through the book as if it were a novel. There are four open-ended questions, each at the beginning of a chapter, after which several possible answers are analyzed. When you read one of these questions, close the book. Think about how you would answer it yourself. Write out a few notes, explaining your thoughts as clearly as you can. Only then, after you have decided what you would have said, read the rest of that section.

Don’t worry if you can’t understand everything in the book. Come back to it again in a couple of years. You’ll be surprised how much more you learn.

FAQ-Lifelong-Learning

Books for Parents and Teachers

To build up your own understanding of elementary arithmetic, the Kitchen Table Math series by Chris Wright offers explanations and activities you can try with your children.

If you want more detailed guidance in understanding and explaining each stage of elementary mathematics, you can pick up a textbook designed for teachers in training. I like the Parker & Baldridge Elementary Mathematics for Teachers books and the Teaching Student-Centered Mathematics: Developmentally Appropriate Instruction series. The two series are completely different, but they complement each other well. Check out the sample chapters from the publishers’ websites to see which one you prefer.

Discover more great books on my Living Math Books for Parents and Other Teachers page.

Focus on Relationships

As you learn, focus on how the math concepts relate to each other. Then the more you learn, the easier you will find it to connect things in your mind and to grasp new ideas.

You might want to keep a math journal about the things you are learning. When you write something down, that helps you remember it, even if you never look back at the journal. But if your mind goes blank and you think, “I know I studied that,” the journal gives you a quick way to review. Make it even easier to flip back through by writing the topic you are studying in the top margin of each page.

When you run into a new vocabulary word, draw a Frayer Model Chart and fill in all the sections. The Frayer Model provides a way to organize information about a new vocabulary word or math concept.

Frayer-Model

And if you read something that’s particularly helpful, you may want to turn to the back page of your journal and start a quick-reference section.

Always Ask Why!

Find a fellow-learner to encourage you on your journey. Bouncing ideas off a friend is a great way to learn. You might want to join the parents and teachers who are learning math together at the Living Math Forum.

And here is the most important piece of advice I can offer. Your slogan must be the one used by the Chinese teachers Liping Ma interviewed: “Know how, and also know why.”

Always ask why the rules you learn in math work. Don’t stop asking until you find someone who can explain it in a way that makes sense to you. When you struggle with a concept and conquer it, it will make you free. You don’t have to be afraid of it anymore.

Know how, and also know why.


Click for details about Let's Play Math bookThis post is an excerpt from my book Let’s Play Math: How Families Can Learn Math Together—and Enjoy It, as are many of the articles in my Let’s Play Math FAQ series.


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


The Math Student’s Manifesto

13895144613_d79092bea2_z

[Feature photo above by Texas A&M University (CC BY 2.0) via Flickr.]

Note to Readers: Please help me improve this list! Add your suggestions or additions in the comment section below…

What does it mean to think like a mathematician? From the very beginning of my education, I can do these things to some degree. And I am always learning to do them better.

(1) I can make sense of problems, and I never give up.

  • I always think about what a math problem means. I consider how the numbers are related, and I imagine what the answer might look like.
  • I remember similar problems I’ve done before. Or I make up similar problems with smaller numbers or simpler shapes, to see how they work.
  • I often use a drawing or sketch to help me think about a problem. Sometimes I even build a physical model of the situation.
  • I like to compare my approach to the problem with other people and hear how they did it differently.

Continue reading The Math Student’s Manifesto

Roadmap to Mathematics: 3rd Grade

Boots - 2352

[Feature photo (above) by Phil Roeder. (CC BY 2.0 via Flickr)]

roadmap3

A frequently-asked question on homeschooling forums is, “Are my children working at grade level? What do they need to know?”

The Council of the Great City Schools has published a handy 6-page pdf summary of third grade math concepts, with suggestions for how parents can support their children’s learning:

Whether you are a radical unschooler or passionately devoted to your textbook — or, like me, somewhere in between — you can help your children toward these grade-level goals by encouraging them to view mathematics as mental play. Don’t think of the standards as a “to do” list, but as your guide to an adventure of exploration. The key to learning math is to see it the mathematician’s way, as a game of playing with ideas.

The following are excerpts from the roadmap document (along with a few extra tips) and links to related posts from the past eight years of playing with math on this blog…

Continue reading Roadmap to Mathematics: 3rd Grade