If you haven’t seen the meme going around, this is a palindrome week because the dates (written American style and with the year shortened to ’19) are the same when reversed.

Here’s a math puzzle for palindrome week:
Print a 100 chart.
Choose a color code.
Play!

What do you think: Will all numbers eventually turn into palindromes?

For easy printing, right-click to open the image above in a new tab.

Place the numbers from 1 to 6 into each row and column. None of the numbers may repeat in any row or column. Within the black “cages,” the numbers must add, subtract, multiply, or divide to give the answer shown.

Did you know that numbers can be polite? In math, a polite number is any number we can write as the sum of two or more consecutive positive whole numbers.

(Consecutive means numbers that come one right after another in the counting sequence.)

For example, five is a polite number, because we can write it as the sum of two consecutive numbers:
5 = 2 + 3

Nine is a doubly polite number, because we can write it two ways:
9 = 4 + 5
9 = 2 + 3 + 4

And fifteen is an amazingly polite number. We can write fifteen as the sum of consecutive numbers in three ways:
15 = 7 + 8
15 = 4 + 5 + 6
15 = 1 + 2 + 3 + 4 + 5

How many other polite numbers can you find?

What Do You Notice?

Are all numbers polite?

Or can you find an impolite number?

Can you make a collection of polite and impolite numbers? Find as many as you can.

How many different ways can you write each polite number as a sum of consecutive numbers?

What do you notice about your collection of polite and impolite numbers?

Can you think of a way to organize your collection so you can look for patterns?

What Do You Wonder?

Make a conjecture about polite or impolite numbers. A conjecture is a statement that you think might be true.

For example, you might make a conjecture that “All odd numbers are…” — How would you finish that sentence?

Make another conjecture.

And another.

Can you make at least five conjectures about polite and impolite numbers?

What is your favorite conjecture? Does thinking about it make you wonder about numbers?

Can you think of any way to test your conjectures, to know whether they will always be true or not?

Real Life Math Is Social

This is how mathematics works. Mathematicians play with numbers, shapes, or ideas and explore how those relate to other ideas.

After collecting a set of interesting things, they think about ways to organize them, so they can look for patterns and connections. They make conjectures and try to imagine ways to test them.

And mathematicians compare their ideas with each other. In real life, math is a very social game.

So play with polite and impolite numbers. Compare your conjectures with a friend.

My goals are to continue playing with math (1) in my homeschool co–op classes and (2) on this blog — and (3) hopefully to publish a couple of new books as well.

My favorite way to celebrate any new year is by playing the Year Game. It’s a prime opportunity for players of all ages to fulfill the two most popular New Year’s Resolutions: spending more time with family and friends, and getting more exercise.

So grab a partner, slip into your workout clothes, and pump up those mental muscles!

Rules of the Game

Use the digits in the year 2019 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

You must use all four digits. You may not use any other numbers.

Solutions that keep the year digits in 2-0-1-9 order are preferred, but not required.

You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.

You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.

You may NOT use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. The Math Forum allows them, but I feel much more creative when I can wrangle a solution without invoking them.

For many years mathematicians, scientists, engineers and others interested in mathematics have played “year games” via e-mail and in newsgroups. We don’t always know whether it is possible to write expressions for all the numbers from 1 to 100 using only the digits in the current year, but it is fun to try to see how many you can find.

But my favorite way to celebrate any new year is by playing the Year Game. It’s a prime opportunity for players of all ages to fulfill the two most popular New Year’s Resolutions: spending more time with family and friends, and getting more exercise.

So grab a partner, slip into your workout clothes, and pump up those mental muscles!

For many years mathematicians, scientists, engineers and others interested in mathematics have played “year games” via e-mail and in newsgroups. We don’t always know whether it is possible to write expressions for all the numbers from 1 to 100 using only the digits in the current year, but it is fun to try to see how many you can find. This year may prove to be a challenge.

Use the digits in the year 2018 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

You must use all four digits. You may not use any other numbers.

Solutions that keep the year digits in 2-0-1-8 order are preferred, but not required.

You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.

You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.

You MAY use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. I’m including these because Math Forum allows them, but I personally try to avoid the beasts. I feel much more creative when I can wrangle a solution without invoking them.

This lovely puzzle (for upper-elementary and beyond) is from Nikolay Bogdanov-Belsky’s 1895 painting “Mental Calculation. In Public School of S. A. Rachinsky.” Pat Ballew posted it on his blog On This Day in Math, in honor of the 365th day of the year.

I love the expressions on the boys’ faces. So many different ways to manifest hard thinking!

Here’s the question:

No calculator allowed. But you can talk it over with a friend, as the boys on the right are doing.

You can even use scratch paper, if you like.

Thinking About Square Numbers

And if you’d like a hint, you can figure out square numbers using this trick. Think of a square number made from rows of pennies.

Can you see how to make the next-bigger square?

Any square number, plus one more row and one more column, plus a penny for the corner, makes the next-bigger square.

So if you know that ten squared is one hundred, then:

… and so onward to your answer. If the Russian schoolboys could figure it out, then you can, too!

Update

Simon Gregg (@Simon_Gregg) added this wonderful related puzzle for the new year: