Tova Brown continues to examine Hilbert’s Hotel Paradox, pondering infinite sets of infinite sets.

As the proprietor of an infinitely large hotel, you pride yourself on welcoming everyone, even when the rooms are full. Your hotel becomes very popular among infinite sports teams, as a result.

Recruitment season presents a challenge, however, when many infinite teams arrive at once. How many infinite teams can stay in a single infinite hotel?

Tova Brown explores the second part of Hilbert’s Hotel Paradox. What’s infinity plus infinity?

Running an infinite hotel has its perks. Even when the rooms are full you can always find space for new guests, so you proudly welcome everyone who appears at your door.

When two guests arrive at once, you make room. When ten guests arrive, you accommodate them easily. When a crowd of hundreds appears, you welcome them all.

Tova Brown’s introduction to Hilbert’s Hotel Paradox, a riddle about the nature of infinity…

Once upon a time, there was a hotel with an infinite number of rooms. You might be thinking this is impossible, and if so you’re right. A hotel like this could never exist in the real world.

But fortunately we’re not talking about the real world, we’re talking about math. And when we do math we can make up whatever rules we want, just to see what happens.

Have you made a New Year’s resolution to spend more time with your family this year, and to get more exercise? Problem-solvers of all ages can pump up their (mental) muscles with the Annual Mathematics Year Game Extravaganza. Please join us!

For many years mathematicians, scientists, engineers and others interested in math have played “year games” via e-mail. We don’t always know whether it’s possible to write all the numbers from 1 to 100 using only the digits in the current year, but it’s fun to see how many you can find.

Use the digits in the year 2016 to write mathematical expressions for the counting numbers 1 through 100. The goal is adjustable: Young children can start with looking for 1-10, middle grades with 1-25.

You must use all four digits. You may not use any other numbers.

Solutions that keep the year digits in 2-0-1-6 order are preferred, but not required.

You may use a decimal point to create numbers such as .2, .02, etc., but you cannot write 0.02 because we only have one zero in this year’s number.

You may create multi-digit numbers such as 10 or 201 or .01, but we prefer solutions that avoid them.

My Special Variations on the Rules

You MAY use the overhead-bar (vinculum), dots, or brackets to mark a repeating decimal. But students and teachers beware: you can’t submit answers with repeating decimals to Math Forum.

You MAY use a double factorial, n!! = the product of all integers from 1 to n that have the same parity (odd or even) as n. I’m including these because Math Forum allows them, but I personally try to avoid the beasts. I feel much more creative when I can wrangle a solution without invoking them.

At home:
Post the calendar on your refrigerator. Use each math puzzle as a daily review “mini-quiz” for your children (or yourself).

In the classroom:
Post today’s calculation on the board as a warm-up puzzle. Encourage your students to make up “Today is…” puzzles of their own.

As a puzzle:
Cut the calendar squares apart and trim off the dates. Then challenge your students to arrange them in ascending (or descending) order.

Make up problems to fill a new calendar for next month.
And if you do, please share!

Want to help your kids learn math? Claim your free 24-page problem-solving booklet, and sign up to hear about new books, revisions, and sales or other promotions.

One of the most persistent math myths in popular culture is the idea that mathematics is primarily about getting right answers.

The truth is, the answer doesn’t matter that much in math. What really matters is how you explain that answer. An answer is “right” if the explanation makes sense.

And if you don’t give an explanation, then you really aren’t doing mathematics at all.

Try This Number Puzzle

Here is a short sequence of numbers. Can you figure out the rule and fill in the next three blanks?

2, 3, 5, 7, ___, ___, ___, …

Remember, what’s important is not which numbers you pick, but rather how you explain your answer.

Possibility #1

Perhaps the sequence is the prime numbers?

2, 3, 5, 7, 11, 13, 17, …

The prime numbers make a wonderful sequence, though it isn’t the one I was thinking of.