Two Ways to Do Math

Two-Ways-to-Do-Math

There are two ways to do great mathematics. The first is to be smarter than everybody else. The second way is to be stupider than everybody else — but persistent.

— Raoul Bott

Wednesday Wisdom features a quote to inspire my fellow homeschoolers and math education peeps. Today’s quote is from Raoul Bott, via The MacTutor History of Mathematics archive. Background photo courtesy of Swedish National Heritage Board (CC BY 2.0) via Flickr.


Tabletop Academy PressGet monthly math tips and activity ideas, and be the first to hear about new books, revisions, and sales or other promotions. Sign up for my Tabletop Academy Press Updates email list.


Ruth Beechick on Teaching

[Feature photo above by Samuel Mann (CC BY 2.0) via Flickr.]

Here’s one more quote from homeschooling guru Ruth Beechick. It applies to classroom teachers, too!

Everyone thinks it goes smoothly in everyone else’s house, and theirs is the only place that has problems.

I’ll let you in on a secret about teaching: there is no place in the world where it rolls along smoothly without problems. Only in articles and books can that happen.

you can

— Ruth Beechick
You Can Teach Your Chile Successfully (Grades 4-8)


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Teaching the Standard Algorithms

Peter Pan Arithmetic Quiz

[Feature photo above by Samuel Mann, Analytical Engine photo below by Roͬͬ͠͠͡͠͠͠͠͠͠͠͠sͬͬ͠͠͠͠͠͠͠͠͠aͬͬ͠͠͠͠͠͠͠ Menkman, both (CC BY 2.0) via Flickr.]

Babbage's Analytical Engine

An algorithm is a set of steps to follow that produce a certain result. Follow the rules carefully, and you will automatically get the correct answer. No thinking required — even a machine can do it.

This photo shows one section of the first true computer, Charles Babbage’s Analytical Engine. Using a clever arrangement of gears, levers, and switches, the machine could crank out the answer to almost any arithmetic problem. Rather, it would have been able to do so, if Babbage had ever finished building the monster.

One of the biggest arguments surrounding the Common Core State Standards in math is when and how to teach the standard algorithms. But this argument is not new. It goes back at least to the late 19th century.

Here is a passage from a book that helped shape my teaching style, way back when I began homeschooling in the 1980s…

Ruth Beechick on Teaching Abstract Notation

Understanding this item is the key to choosing your strategy for the early years of arithmetic teaching. The question is: Should you teach abstract notation as early as the child can learn it, or should you use the time, instead, to teach in greater depth in the mental image mode?

Beechick-EasyStartArithmetic

Abstract notation includes writing out a column of numbers to add, and writing one number under another before subtracting it. The digits and signs used are symbols. The position of the numbers is an arbitrary decision of society. They are conventions that adult, abstract thinkers use as a kind of shorthand to speed up our thinking.

When we teach these to children, we must realize that we simply are introducing them to our abstract tools. We are not suddenly turning children into abstract thinkers. And the danger of starting too early and pushing this kind of work is that we will spend an inordinate amount of time with it. We will be teaching the importance of making straight columns, writing numbers in certain places, and other trivial matters. By calling them trivial, we don’t mean that they are unnecessary. But they are small matters compared to real arithmetic thinking.

If you stay with meaningful mental arithmetic longer, you will find that your child, if she is average, can do problems much more advanced than the level listed for her grade. You will find that she likes arithmetic more. And when she does get to abstractions, she will understand them better. She will not need two or three years of work in primary grades to learn how to write out something like a subtraction problem with two-digit numbers. She can learn that in a few moments of time, if you just wait.

— Ruth Beechick
An Easy Start in Arithmetic (Grades K-3)
(emphasis mine)


Free-Learning-Guide-Booklets2Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Quotable: I Do Hate Sums

MrsLaTouche

I’ve been looking for quotes to put at the beginning of each chapter in my math games books. I found a delightful one by Mrs. LaTouche on the Mathematical Quotations Server, but when I looked up the original source, it was even better:

I am nearly driven wild with the Dorcas accounts, and by Mrs. Wakefield’s orders they are to be done now.

I do hate sums. There is no greater mistake than to call arithmetic an exact science. There are Permutations and Aberrations discernible to minds entirely noble like mine; subtle variations which ordinary accountants fail to discover; hidden laws of Number which it requires a mind like mine to perceive.

For instance, if you add a sum from the bottom up, and then again from the top down, the result is always different.

Again if you multiply a number by another number before you have had your tea, and then again after, the product will be different. It is also remarkable that the Post-tea product is more likely to agree with other people’s calculations than the Pre-tea result.

Try the experiment, and if you do not find it as I say, you are a mere sciolist*, a poor mechanical thinker, and not gifted as I am, with subtle perceptions.

Of course I find myself not appreciated as an accountant. Mrs. Wakefield made me give up the book to [my daughter] Rose and her governess (who are here), and was quite satisfied with the work of those inferior intellects.

— Maria Price La Touche
The Letters of A Noble Woman
London: George Allen & Sons, 1908

*sciolist: (archaic) A person who pretends to be knowledgeable and well informed. From late Latin sciolus (diminutive of Latin scius ‘knowing’, from scire ‘know’) + -ist.


Tabletop Academy PressGet monthly math tips and activity ideas, and be the first to hear about new books, revisions, and sales or other promotions. Sign up for my Tabletop Academy Press Updates email list.


Playing With Math — the Book

300_stars_in_orbit_1

body_Book_cover_for_upload

Update: The crowdfunding campaign is now closed and the book is in the final stages. It should be headed to the printer soon. Check the Playing With Math homepage for publication and ordering information.


There are only a few days left to reserve your copy of Playing With Math: Stories from Math Circles, Homeschoolers, and Passionate Teachers. I don’t have time to finish the review I hoped to write, so instead I’ll share some of my favorite quotes from the book:

What do mathematicians do? We play with math. What are little kids doing when they’re thinking about numbers, shapes, and patterns? They’re playing with math. You may not believe it yet, but you can have fun playing with math, too.

— Sue VanHattum, editor

We had a discussion at the end of the club on how we are all confused now, but pleasantly so, and how important it is to rejoice in confusion and to be comfortable with it. Adults often strive very hard to get rid of any and all possible traces of confusion for kids, making things dreadfully boring.

— Maria Droujkova, after a math circle exploration of infinity

All it talkes to do mathematics is opportunity, a frustrating problem, and a bit of stubbornness.

— Ellen Kaplan, math circle leader

Our own school experiences can make it hard for us to teach without being tempted to “help them master” a concept that they may or may not be ready to master. What we never learned in school was the concept of playing around with math, allowing ideas to “percolate,” so to speak, before mastery occurs, and that process may take time.

— Julie Brennan, homeschooler

Continue reading Playing With Math — the Book

Quotable: Math Connections

ConnectedGearsJoBoaler

It turns out that the people who do well in math are those who make connections and see math as a connected subject. The people who don’t do well are people who see math as a lot of isolated methods.

— Jo Boaler
Math Connections

If you or your children struggle with math, Boaler’s non-profit YouCubed.org may help you recover your joy in learning.

Free Learning Guide Booklets


Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Reblog: Calculus Tidbits

calculus

[Feature photo above by Olga Lednichenko via Flickr (CC BY 2.0).]

This week I have a series of quotes about calculus from my first two years of blogging. The posts were so short that I won’t bother to link you back to them, but math humor keeps well over the years, and W. W. Sawyer is (as always) insightful.

I hope you enjoy this “Throw-back Thursday” blast from the Let’s Play Math! blog archives:


Finding the Limit

Eldest daughter had her first calculus lesson last night: finding the limit as delta-t approached zero. The teacher found the speed of a car at a given point by using the distance function, calculating the average speed over shorter and shorter time intervals. Dd summarized the lesson for me:

“If you want to divide by zero, you have to sneak up on it from behind.”


Harmonic Series Quotation

This kicked off my week with a laugh:

Today I said to the calculus students, “I know, you’re looking at this series and you don’t see what I’m warning you about. You look and it and you think, ‘I trust this series. I would take candy from this series. I would get in a car with this series.’ But I’m going to warn you, this series is out to get you. Always remember: The harmonic series diverges. Never forget it.”

—Rudbeckia Hirta
Learning Curves Blog: The Harmonic Series
quoting Alexandre Borovik


So You Think You Know Calculus?

Rudbeckia Hirta has a great idea for a new TV blockbuster:


Common Sense and Calculus

Sawyer-MathDelight

And here’s a quick quote from W. W. Sawyer’s Mathematician’s Delight:

If you cannot see what the exact speed is, begin to ask questions. Silly ones are the best to begin with. Is the speed a million miles an hour? Or one inch a century? Somewhere between these limits. Good. We now know something about the speed. Begin to bring the limits in, and see how close together they can be brought.

Study your own methods of thought. How do you know that the speed is less than a million miles an hour? What method, in fact, are you unconsciously using to estimate speed? Can this method be applied to get closer estimates?

You know what speed is. You would not believe a man who claimed to walk at 5 miles an hour, but took 3 hours to walk 6 miles. You have only to apply the same common sense to stones rolling down hillsides, and the calculus is at your command.


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.