Fifty is the smallest number that is the sum of two non-zero square numbers in two distinct ways: 50 = 12 + 72 and 50 = 52 + 52. … I’m a teacher I have to ask: “So what’s the next bigger number to 50 that is the sum of two non-zero square numbers in two distinct ways?” …
There is always something to investigate in math. One of the major objectives of school math is to get students into this thinking habit without us telling them to do so but I’m digressing from my topic now.
Let’s get to the great posts submitted for this edition.
My favorite playful math lessons rely on adult/child conversation — a proven method for increasing a child’s reasoning skills. What better way could there be to do math than snuggled up on a couch with your little one, or side by side at the sink while your middle-school student helps you wash the dishes, or passing the time on a car ride into town?
As soon as your little ones can count past five, start giving them simple, oral story problems to solve: “If you have a cookie and I give you two more cookies, how many cookies will you have then?”
The fastest way to a young child’s mind is through the taste buds. Children can easily visualize their favorite foods, so we use mainly edible stories at first. Then we expand our range, adding stories about other familiar things: toys, pets, trains.
Most remarks made by children consist of correct ideas very badly expressed. A good teacher will be very wary of saying ‘No, that’s wrong.’ Rather, he will try to discover the correct idea behind the inadequate expression. This is one of the most important principles in the whole of the art of teaching.
Most people think that mathematics means working with numbers and that being “good at math” means being able to do (only slower) what any $10 calculator can do. But then, most people think all sorts of silly things, right? That’s what makes “man on the street” interviews so funny.
Numbers are definitely part of math — but only part, and not even the biggest part. And being “good at math” means much more than being able to work with numbers. It means making connections, thinking creatively, seeing familiar things in new ways, asking “Why?” and “What if?” and “Are you sure?”
It means trying something and being willing to fail, then going back and trying something else. Even if your first try succeeded — or maybe, especially if your first try succeeded. Just knowing one way to do something is not, for a mathematician, the same as understanding that something. But the more different ways you know to figure it out, the closer you are to understanding it.
Mathematics is not just memorizing and following rules. If we want to teach real mathematics, we teachers need to learn to think like mathematicians. We need to see math as a mental game, playing with ideas. James Tanton explains:
Singing Banana (James Grime) recorded this video at the Mathematical Association annual conference dinner, 2011. I’ve shared it before, but that was over a holiday weekend, so many of you may have missed it. It relates, in a way, to our PUFM lesson this week.
Our decimal system of recording numbers is ingenious. Once learned, it is a simple, versatile, and efficient way of writing numbers. … But the system is not obvious nor easily learned. The use of place value is subtle, and mastering it is the single most challenging aspect of elementary school mathematics.
Ironically, these challenges are largely invisible to untrained parents and teachers — place value is so ingrained in adults’ minds that it is difficult to appreciate how important it is and how hard it is to learn.
In other words, we take place value for granted. I know this was true of me when I started teaching my kids. Every year, their textbooks would start with the obligatory chapters on place value, which seemed to me just busywork. I began to appreciate the vital importance of place value when I read Liping Ma’s book and saw how the American teachers were unable to properly explain subtraction or multi-digit multiplication.
Place value is the heart of our number system, the foundation on which all the rest of arithmetic must be built. Because of place value, “The simplest schoolboy is now familiar with facts for which Archimedes would have sacrificed his life.”
Are you a homeschooler? Are you happy with your current curriculum, or would you like to break out of the textbook mold and explore math through “living” books and activities? Whether you hope to replace your math program or just to supplement it, I can show you ways to turn math into a learning adventure for the whole family. Your children will build a stronger foundation of understanding when you teach math as a game, playing with ideas.
This blog originally grew out of my books, and now it’s coming full circle: New, expanded editions of my long-out-of-print books are ripening on the vine, growing out of the blog. To bring them to harvest, I’m going to need your help.
It has taken much longer than I had hoped to whip the manuscripts into form. My new goal is to publish ebook editions, since I will be able to sell them for about half what the original books cost twelve years ago. I’m hoping that I can finish at least a couple of the ebooks by mid-summer.
Many things in mathematics need to be understood relationally — that is, in relationship to other concepts. But some things just need to be memorized. How do you know which is which? A homeschooling friend pointed out that one thing children definitely need to memorize is the counting sequence from 1-100 and beyond. While there are some patterns that make counting easier, one does just have to memorize which “nonsense sounds” we have attached to each number.
Another sort-of counting that young students should master is subitizing — recognizing at a glance how many items are in a small group. Children do this instinctively, but we can help them develop the skill by playing subitizing games.
[Aside: In writing this blog post, I ran into some nostalgia. Back when we first did these PUFM lessons, my daughter Kitten was only a toddler. I wrote, “I’ve tried to do lots of counting with my youngest, who hasn’t quite gotten beyond, ‘…eleven, twelve, firteen, firteen, nineteen, seven,…’ The numbers tend to start appearing randomly after she gets past 10.” Ah, memories.]
Profound Understanding of Fundamental Mathematics (PUFM) is a phrase coined by Liping Ma in her landmark book, Knowing and Teaching Elementary Mathematics, to describe the deep, broad, and thorough understanding exhibited by several of the Chinese teachers she interviewed.
You gain PUFM the hard way: by teaching. The Chinese teachers with PUFM were the ones who had taught for years, taught multiple levels, and studied intensively the materials they taught. I doubt there’s any other way to do it. Home schooling is great for developing PUFM because you teach for years and teach multiple levels. The problem is, by the time you really understand the stuff, the kids are grown. Here are a few hints to help speed up the process a little bit:
Learn as much as you can, wherever you can, even when the topic doesn’t seem to relate to what your kids are studying now. Ask questions.
Pick up library books on math (510-519 on the Dewey Decimal shelves), some of which you’ll find helpful and some will bore you to distraction. Read the helpful ones and return the others — but try to get through at least 10 pages of a math book before giving up. You’ll learn a lot that way.
Always look for connections between topics. Think about how addition and subtraction are related, or addition and multiplication, or fractions and division. Think about how the different levels of understanding a topic are related. (Hint: Start by reading the lesson titles as well as the lessons themselves. Lay out a few years’ worth of math books and just read lesson titles, to see how it all goes together.)
Work on picking up the math vocabulary (distributive property, factors, sum, numerator, etc.) yourself and using it as you teach. Having the right words will help you hold ideas in your mind.