FAQ: He Won’t Stop Finger-Counting

“My oldest son has somehow developed the horrid habit of counting on his fingers. We worked on the math facts all summer. He knows the answers in simple form, such as 9 + 4, but if it’s in a bigger problem like 249 + 54, he counts up to add or counts down to subtract, all using fingers. My younger children have no problem with mental math, but he can’t seem to get it. Are there any tips or tricks to stop this?”

New Crutches

Counting on fingers is not a horrid habit, it is a crutch. Please think for a moment about the purpose of crutches. The blasted things are an uncomfortable nuisance, but there are times when you can’t get anywhere without them. And if you need them, it does you no good for a friend to insist you should crawl along on your own.

That is how your son feels right now about his fingers. He is struggling with something his younger siblings find easy, and he can tell that you are frustrated. His confidence is broken, in a cast, and needs time for healing. So he falls back on what he knows he can do, counting up the answer.

Think positive: this means he still believes that math ought to make sense — that to understand what he is doing is more important than to guess at an answer. You want him to value sense-making, because otherwise he will try to memorize his way through middle school and high school math. That is the road to disaster.

Continue reading FAQ: He Won’t Stop Finger-Counting

FAQ: Trouble with Worksheets

“Worksheet problems make my daughter’s brain freeze. Even simple things such as “2 + ___ = 2″ confuse her. What can I do?”

Can your daughter do math if you put away the worksheet and ask her a real-life problem: “I have a lunch sack. I put two cookies into the sack, and then I give it to you. When you look into the sack, you see two cookies there. Can you tell me what was in the sack at the beginning, before I put my cookies in?”

Or can she solve problems when the answer isn’t zero? Could she figure out how many you started with if she saw four cookies when she looked in the sack?

The idea of having a number for “nothing” can seem strange to young children.

Continue reading FAQ: Trouble with Worksheets

Playing with Math Shapes

Playing-with-shapesI love it when a plan — or rather, a series of math thoughts — comes together.

On Monday, Emily Grosvenor (author of the Tessalation! picture book) asked me how parents who are insecure in math could help their children learn through play, and I responded with this quote from my Let’s Play Math book:

If you are intimidated by numbers, you can look for patterns of shape and color. Pay attention to how they grow. Talk about what your children notice.

But I wasn’t entirely satisfied with that answer. So many adults have come away from their own school experience thinking math is only numbers. Even with shapes, isn’t it the numbers about them — how many sides, what size of angles, calculate the the area or perimeter — that are important? That’s what school math tends to focus on.

Those of us who are comfortable with math know that there are many more things to notice and think about than just numbers. We know that it’s this noticing, thinking, and wondering that is at the heart of math. And that just playing with shapes can build a powerful foundation for future math learning.

And then yesterday, Malke Rosenfeld posted a beautiful article about a paper manipulative created by Paula Krieg. Which included this video:

The ability to create, and maintain, and manipulate shapes mentally — that’s the goal. Just like kids who can put numbers together in their heads, kids who can rotate, flip, and think of how shapes fit together in their heads have a powerful tool to analyze not only simple shape puzzles, but dividing up an area that’s a more complex room shape … to look at a piece of artwork … or look at a building … For these kids, all the world around becomes a playground to use mathematical ideas.

— Doug Clements
Problem Solving Development: Composing Shapes

Of course, pattern blocks are good for much more than just filling in worksheet pictures. But I love this peek into how a child’s understanding grows, in bits and spurts — without any numbers at all — until the world itself becomes a playground for mathematical ideas.

Want more?

You know what? Children like mathematics. Children see the world mathematically … When we do a puzzle, when we count things, when we see who’s got more, or who’s taller … Play and mathematics are not on opposite sides of the stage.

— Doug Clements
Why Early Childhood is the Right Time to Start Learning Math

Playful Math Education Carnival 97

Did you know 97 is an emirp?
Did you know 97 is an emirp? It’s prime both forward and backward! What other emirps can you find?

Welcome to the 97th edition of the Math Teachers At Play math education blog carnival: a monthly smorgasbord of links to bloggers all around the internet who have great ideas for learning, teaching, and playing around with math from preschool to pre-college.

A few articles were submitted by their authors, but most were drawn from the immense backlog in my rss reader. If you’d like to see your blog post featured next month, be sure to send it in yourself. Our hosts are busy parents and teachers who have limited time to scour the Internet for goodies.

To add a bit of color, I’ve thrown in several favorites from my newly updated Math with Living Books pages. Some (affiliate) links go to Amazon.com, where you can read descriptions and reviews — but there’s no need to buy. Most of these books should be available through your local library.

Table of Contents

If you’d like to skip directly to your area of interest, click here:

Please: If you enjoy the carnival, would you consider volunteering to host sometime this year? Classroom teachers, homeschoolers, unschoolers, or anyone who likes to play around with math (even if the only person you “teach” is yourself) — if you would like to take a turn, please speak up!

And now, let the mathematical fun begin!


Pinczes-A Remainder of One

When the queen of her bugs demands that her army march in even lines, Private Joe divides the marchers into more and more lines so that he will not be left out of the parade.

Talking Math with Kids

  • Crystal Wagner (@Tri_Learning) shares several Math Games to Play in the Car: “Or maybe you are waiting in line at the grocery store or doctor’s appointment. Turn these times of waiting into learning opportunities.”
  • Christopher Danielson (@Trianglemancsd) shows how The sequence machine can launch math conversations with older students: “Now you can generate number sequences, without being distracted by the multiplication facts.”

richman-bykids

Help inspire your kids to try writing their own unique problems. Includes a wide range of math topics and concepts: money and time, fractions, percentages, geometry, logic, and multi-step problem solving.

[Back to top.]
[Back to Table of Contents.]

Continue reading Playful Math Education Carnival 97

Multiplication Is Not Repeated Addition: Update

Multiplication Is Not Repeated Addition: Update[Photo “Micah and Multiplication” by notnef via Flickr (CC BY 2.0, text added).]

Some Internet topics are evergreen. I noticed that my old Multiplication Is Not Repeated Addition post has been getting new traffic lately, so I read through the article again. And realized that, even after all those words, I still had more to say.

So I added the following update to clarify what seemed to me the most important point.

I’d love to hear your thoughts! The comment section is open down below . . .


Language Does Matter

Addition: addend + addend = sum. The addends are interchangeable. This is represented by the fact that they have the same name.

Multiplication: multiplier × multiplicand = product. The multiplier and multiplicand have different names, even though many of us have trouble remembering which is which.

  • multiplier = “how many or how much”
  • multiplicand = the size of the “unit” or “group”

Different names indicate a difference in function. The multiplier and the multiplicand are not conceptually interchangeable. It is true that multiplication is commutative, but (2 rows × 3 chairs/row) is not the same as (3 rows × 2 chairs/row), even though both sets contain 6 chairs.

A New Type of Number

In multiplication, we introduce a totally new type of number: the multiplicand. A strange, new concept sits at the heart of multiplication, something students have never seen before.

The multiplicand is a this-per-that ratio.

A ratio is a not a counting number, but something new, much more abstract than anything the students have seen up to this point.

A ratio is a relationship number.

In addition and subtraction, numbers count how much stuff you have. If you get more stuff, the numbers get bigger. If you lose some of the stuff, the numbers get smaller. Numbers measure the amount of cookies, horses, dollars, gasoline, or whatever.

The multiplicand doesn’t count the number of dollars or measure the volume of gasoline. It tells the relationship between them, the dollars per gallon, which stays the same whether you buy a lot or a little.

By telling our students that “multiplication is repeated addition,” we dismiss the importance of the multiplicand. But until our students wrestle with and come to understand the concept of ratio, they can never fully understand multiplication.

For Further Investigation

nunes-doingmathIf you’re interested in digging deeper into how children learn addition and multiplication, I highly recommend Terezina Nunes and Peter Bryant’s book Children Doing Mathematics.

To learn about modeling multiplication problems with bar diagrams, check out the Mad Scientist’s Ray Gun model of multiplication:

And here is an example of the multiplication bar diagram in action:

Let’s Play Math FAQs: Introduction

I’ll let you in on a secret about teaching: there is no place in the world where it rolls along smoothly without problems. Only in articles and books can that happen.

—Dr. Ruth Beechick
You Can Teach Your Child Successfully

Learning math is an adventure into the unknown. The ideas we adults take for granted are a wild, unexplored country to our children. Like any traveler in a strange land, they will stumble over rocky places and meet with unexpected detours.

Whenever I visit a parenting forum, I feel compassion for the families who are struggling with math. No other school subject elicits such depths of frustration and despair.

Continue reading Let’s Play Math FAQs: Introduction

New Picture Book: Tessalation!

When I run a math circle or co-op class, I love starting with a picture book. This new beauty from Emily Grosvenor will be perfect.

You could say that Tessalation is a book about tessellations (repeating tiled patterns), but it is really a children’s picture book about discovering order in a chaotic world.

— Emily Grosvenor

Seeing Math in the World

In taking a playful approach to mathematics, I hope to open children’s eyes to math in their world. Schooly math lessons have led many of my math group kids to think a “pattern” has to be a strictly repeating (and rather boring) series of shapes or colors.

But in the real world, patterns are so important that American mathematician Lynn Arthur Steen defined mathematics as the science of patterns.

“As biology is the science of life and physics the science of energy and matter, so mathematics is the science of patterns,” Steen wrote. “We live in an environment steeped in patterns — patterns of numbers and space, of science and art, of computation and imagination. Patterns permeate the learning of mathematics, beginning when children learn the rhythm of counting and continuing through times tables all the way to fractals and binomial coefficients.”

Tessa Truman-Ling’s delight in patterns is contagious. And it will provide a wonderful jumping-off point for a variety of math activities.

Visit Grosvenor’s Kickstarter page to find out more about her lovely book:

Further Exploration

Hotel Infinity: Part Five

Hotel Infinity1Tova Brown concludes her exploration of the Hilbert’s Hotel Paradox with a look at the cardinality of the real numbers.

You run a hotel with an infinite number of rooms. You pride yourself on accommodating everyone, even guests arriving in infinitely large groups — but some infinities are more infinite than others, as it turns out.

Tova Brown
Hotel Infinity: Part Five

Check out Tova Brown’s growing collection of videos that explore advanced math concepts through story-telling.

Hotel Infinity: Part Four

Hotel Infinity1Tova Brown dives deeper into Hilbert’s Hotel Paradox, considering the difference between rational numbers and reals.

You run an infinitely large hotel, and are happy to realize that you can accommodate an infinite number of infinite groups of guests.

However, a delicate diplomatic situation arises when a portal to another universe opens, introducing a different kind of guest, in a different kind of group.

Can you make room for them all?

Tova Brown
Hotel Infinity: Part Four

Click here to read Part Five…

Hotel Infinity: Part Three

Hotel Infinity1Tova Brown continues to examine Hilbert’s Hotel Paradox, pondering infinite sets of infinite sets.

As the proprietor of an infinitely large hotel, you pride yourself on welcoming everyone, even when the rooms are full. Your hotel becomes very popular among infinite sports teams, as a result.

Recruitment season presents a challenge, however, when many infinite teams arrive at once. How many infinite teams can stay in a single infinite hotel?

Tova Brown
Hotel Infinity: Part Three

Click here to read Part Four…